Neutralization

In general: Acid + Base \rightarrow Salt + Water

Salt Solutions

• When salts dissolve, their ions can recombine with water

Salt Solutions $A^{-} + H_2 \longrightarrow HA + OH^{-}$

 $B^+ + H_2O \iff H^+ + BOH$

Salt Hydrolysis

To determine if a salt will form an acidic or basic solution, remember the following rules:

Strong acid + Strong base

 \rightarrow Neutral solution

Strong acid + Weak base

 \rightarrow **Acidic** solution

Weak acid + Strong base

 \rightarrow **Basic** solution

Acid-Base Properties of Salt Solutions

- Salt solutions are affected by *salt hydrolysis,* in which ions produced by the dissociation of a salt react with water to produce either hydroxide ions or hydronium ions—thus impacting pH.
- *Basic salt solutions* an anion that is the strong conjugate base of a weak acid reacts with water to produce hydroxide ion.

 $A^{-}(aq) + H_2O(l) \Longrightarrow HA(aq) + OH^{-}(aq)$

- Neutral salt solutions
 - A salt composed of the cation of a strong base and the anion of a strong acid produces a neutral solution.
 - These ions do not hydrolyze in water.

For example:

NaCl or KNO₃

- Acidic salt solutions
 - When the cation of a salt is the strong conjugate acid of a weak base, a solution of the salt will be acidic.

For example:

 $NH_4^+(aq) + H_2O(l) \Longrightarrow NH_3(aq) + H_3O^+(aq)$

Salts That Produce Neutral Solutions

Salts of strong acids/strong bases *Example* – solution of MgBr₂, salt of strong acid + strong base 2HBr (aq) + Mg(OH)_{2 (aq)} \rightarrow 2 H₂O (1) + MgBr_{2 (aq)} formation $MgBr_{2(aq)} \rightarrow Mg^{2+}_{(aq)} + 2 Br_{(aq)}$ dissolution Weak conjugate \longrightarrow Mg⁺² (aq) + (20)No reaction base Weak conjugate $Br_{(aq)} + K_2 O \rightarrow$ No reaction base of strong acid Weak conjugate acid and base do not hydrolyze (do not react with water) \Rightarrow pH = 7

Hydrolysis of Salts

Salts can be acidic, basic, or neutral.

1. Neutral Salts

Consider NaCl

The **neutralization equation** used to produce **NaCl** will tell us what kind of salt it is.

HCl +NaOH \rightarrow NaCl +HOHstrong acidstrong baseneutral salt

When the **acid** and **base** parents are both **strong** the salt is always **neutral**.

A neutral salt will dissociate in water.

$NaCl \rightarrow Na^{+} + \mathcal{L}^{-}$ no ions to hydrolyze- neutral

Cross off the **both ions** that come from **strong parents** as they do not hydrolyze or react further with water- they are **neutral**.